FLUID MECHANICS & HEAT TRANSFER

Kinematics
 Velocity, Acceleration
 Pathlines, Streamlines

Fluid Statics
 Basic Law of Hydrostatics
 Forces on Submerged Surfaces

Conservation of Mass
 Integral Form, Differential Form (One Dimensional)

Momentum Equation
 Integral Form, Differential Form (One Dimensional)

Incompressible, Inviscid Flow
 Euler's Equation
 Bernoulli's Equation
 Stream Function
 Vorticity, Irrotational Flow
 Velocity Potential
 Source, Sink, Doublet

Incompressible, Viscous Flow
 Newtonian Fluid, Viscosity
 Fluid Developed Laminar Flow
 Turbulent Flow in Pipes (Head Loss)
 Boundary Layer (Integral Methods)
 Lift and Drag
 Flow Measurements (Orifice, Venturi)

Compressible, Inviscid Flow
 Equations of State (Perfect Gas)
 Isentropic Flow
 Sonic Velocity and Mach Number
 Converging Nozzle
 Converging - Diverging Nozzle

Conduction
 Fourier's Law (Thermal Conductivity)

One-Dimensional Study Conduction Area Chang, Internal Energy Generation
 Extended Surfaces (Fins)
 Unsteady Conduction in One Dimension
 Lumped Analysis Method for Transient Conduction
 Heisler Charts

Convection
 Boundary Layer Concepts
 Forced and Natural Convection in Laminar and Turbulent Flows
 Convection Heat Transfer Coefficient
Dimensional Analysis, Correlations
Logarithmic Mean Temperature

Radiation
Emissivity, Absorptivity, Reflectivity, Transmissivity
Intensity of Monochromatic Emissive Power
Black Body Radiation
Wave Length Dependent Properties
Gray Surfaces
Shape Factor
Radiosity Method (Including Electrical Analogy)

References:
Fox and McDonald, Introduction to Fluid Mechanics. 2nd ed. (New York: John Wiley and Sons).