1. Find the intervals on which the following differential equations are normal:
 (a) \(y'' + 7xy' - 11y = \ln \sin \pi x \),
 (b) \(\sqrt{x(1 - x)}y''' - e^{-x} \sin xy' + y = 2 - x \),
 (c) \(x^2y''' - 3xy'' + 4y = \sinh x \).

2. Consider the differential equation
 \[y'' + 4y = 4 \text{ on } (-\infty, \infty) \]
 with \(y(0) = 2 \) and \(y'(0) = 0 \). Given that both \(1 + \cos 2x \) and \(2 \cos^2 x \) satisfy this differential equations and the initial conditions, what argument would you use to conclude that the solutions are equal, i.e.,
 \[1 + \cos 2x = 2 \cos^2 x \].

3. Determine if the following set of functions are linearly dependent or independent. If they are linearly dependent, provide a relationship that shows the dependence.
 (a) \(\{ e^x, x, \cosh x \} \) on \((-\infty, \infty) \),
 (b) \(\{ e^x, e^{2x} \} \) on \((-\infty, \infty) \),
 (c) \(\{ x^2 - 1, x^2 + x + 1, x^2 + 3x + 5 \} \) on \((-\infty, \infty) \).

4. During the lecture, we remarked on the superposition principle for the particular solutions of non-homogeneous linear ordinary differential equations. Use this principle to obtain a particular solution to
 \[y'' - 6y' + 5y = -10x^2 - 6x + 32 + e^{2x} \]
given that \(3e^{2x} \) and \(x^2 + 3x \) are respectively particular solutions of
 \[y'' - 6y' + 5y = -9e^{2x} \] and \(y'' - 6y' + 5y = 5x^2 + 3x - 16 \).