Linear Algebra

1. (a) Suppose that Q_1 and Q_2 are two $n \times n$ orthogonal matrices. Show that the product Q_1Q_2 is also an orthogonal matrix.

(b) Consider the matrix

$$
A = \begin{bmatrix}
2 & -1 & 2 \\
1 & 1 & -1 \\
6 & 0 & 2
\end{bmatrix}.
$$

Determine the nullspace of A.

2. Consider the system of equations

\begin{align*}
x_1 - x_2 + x_3 + 2x_4 &= 1, \\
-x_1 + 2x_2 + x_3 - x_4 &= 0, \\
2x_1 - x_2 - x_3 + 2x_4 &= 1, \\
11x_1 + x_2 + x_3 - x_4 &= 2, \\
3x_1 + x_2 + 4x_3 + 5x_4 &= 2.
\end{align*}

Write the above in the form $Ax = b$. Using the Gaussian elimination technique to the Augmented matrix $[A|b]$, determine the rank of the matrix A. Is there a solution to x? If the answer is yes, obtain the solution. If the answer is no, explain.
1. (a) Consider an $n \times n$ elementary unit lower-triangular matrix L_i. (Note: A unit lower triangular matrix is a lower triangular matrix with each of the diagonal elements equal to unity. An elementary lower triangular matrix L_i is a lower triangular matrix with possible non-zero elements below the diagonal element in the i^{th} column.)

Let E_{ij} denote the permutation matrix obtained by interchanging the rows i and j of the identity matrix I of size n.

Show that the product $E_{35}L_1E_{35}^T$ interchanges only the third and fifth elements in the first column of L_1.

(b) Show that permutation matrices are orthogonal.

2. (a) A real symmetric matrix A is said to be positive definite if $x^T A x > 0$ for all $x \neq 0$ (x is an n-dimensional vector). Consider the following matrix obtained during the discretization of a differential equation:

$$
A = \begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& -1 & \ddots & \ddots \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{bmatrix}
$$

Show that A is positive definite.

(b) Show that the diagonal elements of a positive definite matrix are positive.
Complex variables

1. Let \(u(x, y) \) and \(v(x, y) \) be real-valued functions of the real variables \(x \) and \(y \).

 Also let \(z = x + iy \) and let \(w = u(x, y) + iv(x, y) \).

 a) Sketch a straight line going from \(-1 - i\) to \(2 + i\) on an Argand diagram. This straight line is represented by the variable \(z \).

 b) Sketch the corresponding line for the complex variable \(w = u(x, y) + iv(x, y) \) on an Argand diagram for the transformation \(w = 3iz + 1 \).

 c) As for b), sketch on an Argand diagram the corresponding line for the transformation \(w = \frac{1}{z} \).

2. With \(w \) and \(z \) defined in question 1,

 a) State the Cauchy Riemann condition for \(u(x, y) \) and \(v(x, y) \) to be conjugate functions so that \(w \) is an analytic function of \(z \).

 a) A real-valued function of two real variables is said to be harmonic if it satisfies the two-dimensional version of Laplace’s equation. Is \(v(x, y) = e^x \sin(y) \) harmonic? If so, find the conjugate harmonic function \(u(x, y) \) and express \(w \) directly as a function of \(z \).

 b) Is \(u = x^2 - 2y \) harmonic? If so, find the conjugate harmonic function \(v(x, y) \) and express \(w \) directly as a function of \(z \).
Complex variables

In general let \(w = u + iv \) and \(z = x + iy \) where \(i = \sqrt{-1} \).

1. Given that the above complex numbers can be represented on an Argand diagram, sketch the three straight line paths traced out in the \(z \) plane starting at the origin, A, proceeding to point B at 1, then to point C located at \(i \) before closing at point A. Show these three path segments and use arrows to indicate path directions.

 State the equations for determining points in \(x \) and \(y \) for each of these three path segments.

 Determine and sketch the corresponding path in the \(w \) plane where \(w = z^2 \).

2. If \(w = \sinh(z) \) show that \(u \) and \(v \) satisfy the Cauchy-Riemann condition for differentiability as well as the Laplace equation.

 Derive a general expression for \(\ln(z) \) and hence determine solutions of
 a) \(\ln(-4) \).
 b) \(\ln(3 - 4i) \).