Sample Exam: Controls

Instructions: Welcome to quals! First, put your name on the paper you turn in (ideally a Blue Book). There are 4 problems on this exam, each of which is worth 25 points. The exam is closed notes, closed book. Calculators may be used. Good luck!

Problem 1: Consider the combined feedforward/feedback control structure shown in Figure 1.

Suppose that the constituent transfer functions are given by:

\[C_{ff}(s) = K_{ff}, \] (1)
\[C_{fb}(s) = K_{fb}, \] (2)
\[P(s) = \frac{1}{1.5s + 1}, \] (3)
\[H(s) = \frac{1}{0.5s + 1}, \] (4)

where \(K_{ff} \) and \(K_{fb} \) are positive scalar values (gains).

a) (15 points) For what (positive) values of \(K_{ff} \) and \(K_{fb} \) is the closed-loop system stable? Your answer should indicate a range of \(K_{ff} \) and \(K_{fb} \) for which the system is stable. If you think the system is stable for all or no values of \(K_{ff} \) or \(K_{fb} \), you may just say “stable for all values” or “stable for no values.”

b) (10 points) Assuming \(K_{fb} = 8 \), what value of \(K_{ff} \) is required to achieve a DC gain of 1 from \(y_{des} \) to \(y \)?

Problem 2: The longitudinal dynamics of a luxury cruise ship (which are similar to the longitudinal dynamics of, say, a Carnival Cruise Lines non-luxury ship, except when the Carnival ship runs aground) are described by the following equations:

\[\tau_{eng} \dot{F}_{th} = F_{cmd} - F_{th}, \] (5)
\[m\dot{v} = F_{th} - F_{drag}, \] (6)
\[F_{drag} = k_{aero}(v + v_{wind})^2 + k_{hydro}(v + v_{cur})^2, \] (7)

where the variables are defined as follows:

\(F_{th} \) = Thrust force (N)
\[F_{cmd} = \text{Commanded thrust force (N)} \]
\[\tau_{eng} = \text{Engine time constant (s)} \]
\[m = \text{Ship mass (including “added mass” of displaced fluid) (kg)} \]
\[F_{drag} = \text{Retarding force from aerodynamic and hydrodynamic drag (N)} \]
\[v = \text{Ship speed (m/s)} \]
\[v_{wind} = \text{Wind speed (m/s)} - \text{Positive denotes a headwind} \]
\[v_{cur} = \text{Current speed (m/s)} - \text{Positive denotes current flowing against the ship} \]
\[k_{aero} = \text{Lumped aerodynamic drag coefficient (N s}^2 \text{m}^{-2}) \]
\[k_{hydro} = \text{Lumped hydrodynamic drag coefficient (N s}^2 \text{m}^{-2}) \]

a) (15 points) Derive a linear approximation of the aforementioned longitudinal dynamic equations, around the equilibrium point \(v_0 = 10 \text{ m/s}, v_{wind,0} = 5 \text{ m/s}, v_{cur,0} = 0 \text{ m/s}, F_{th,0} = 42,500 \text{N}, F_{cmd,0} = 42,500 \text{N}, \) where the constant parameters are given by:

\[\tau_{eng} = 10 \text{ s} \]
\[m = 4 \cdot 10^7 \text{ kg} \]
\[k_{aero} = 100 \frac{Ns^2}{m^2} \]
\[k_{hydro} = 200 \frac{Ns^2}{m^2} \]

b) (10 points) Derive the transfer functions from \(\delta F_{cmd}, \delta v_{wind}, \) and \(\delta v_{cur} \) to \(\delta v \) for the linearized model you derived in (a).

Problem 3: Consider the two control system configurations in Figure 2, where \(y_{des} \) represents a setpoint, \(d \) represents an external disturbance, and \(n \) represents sensor noise. For each of the following three sets of circumstances and control requirements, indicate which of the two control structures you would recommend. *Answers should be supported by mathematical analyses to receive full credit.*

a) (10 points) Suppose that the plant dynamics are not known precisely, but it is known that \(0.5 \leq a \leq 1.5 \). Furthermore, assume that the closed-loop performance requirements are:

- Stable closed-loop system;
- DC (steady-state) gain of 1 from \(y_{des} \) to \(y \).

b) (10 points) Suppose that the plant dynamics are known precisely, with \(a = 1 \), and that the new closed-loop performance requirements are:

- Stable closed-loop system;
- DC (steady-state) gain of 1 from \(y_{des} \) to \(y \);
- DC (steady-state) gain of 0 from \(d \) to \(y \).
Figure 2: Block diagrams for the configurations to be analyzed in problem 3. Note: the negative sign by the summation junction indicates negative feedback.

c) (5 points) Suppose that the plant dynamics are known precisely, with $a = 1$, and that the new control requirements are as follows:

- Stable closed-loop system;
- DC (steady-state) gain of 1 from y_{des} to y;
- DC (steady-state) gain of 0.5 or less from $-n$ to y.

Problem 4: Consider the block diagram of Fig. 3, where a scalar gain (K) and first order filter (with time constant τ) are cascaded with a linear mystery system having a transfer function $G(s)$, whose Bode plot is given in Fig. 4.

![Figure 3: Block diagram for problem 4.](image)

a) (15 points) Suppose that $\tau = 0.00001$. What is the maximum gain, K, for which the closed-loop system is stable?

b) (10 points) Suppose that $K = 1$. As the filter time constant, τ, is increased, does the system’s phase margin increase, decrease, or stay the same?
Figure 4: Bode plot of $G(s)$ for problem 4.